PSU-IRL-SCI 389

THE PENNSYLVANIA STATE UNIVERSITY

020

IONOSPHERIC RESEARCH

Scientific Report 389

ON THE PRODUCTION OF N₂O FROM THE REACTION OF O(¹D) WITH N₂

by

R. Simonaitis, Eduardo Lissi and Julian Heicklen February 22, 1972

The research reported in this document has been sponsored by the National Aeronautics and Space Administration under Grant NGL 39-009-003 and in part by the National Science Foundation under Grant No. GA-12385.

IONOSPHERE RESEARCH LABORATORY

University Park, Pennsylvania

FROM THE REACTION OF O(1 D) WITH N2 R Simonaitis, et al (Pennsylvania State Univ.) 22 Feb. 1972 16 p CSC

W/2-2910 Unclas

PSU-IRL-SCI-389

Scientific Report 389

"On the Production of N_2O from the Reaction of $O(^1D)$ with N_2 "

by.

R. Simonaitis, Eduardo Lissi and Julian Heicklen

February 22, 1972

"The research reported in this document has been sponsored by the National Aeronautics and Space Administration under Grant NGL 39-009-003 and in part by the National Science Foundation under Grant GA-12385."

Submitted by:

Julian Heicklen, Professor of Chemistry

Project Supervisor

Approved by:

J. S. Nisbet, Director

Ionosphere Research Laboratory

, Ionosphere Research Laboratory

The Pennsylvania State University

University Park, Pennsylvania 16802

ABSTRACT

Ozone was photolyzed at 2537 A and 25 $^{\circ}$ C in the presence of 42-115 torr of O₂ and about 880 torr of N₂ to test the relative importance of the two reactions

$$O(^{1}D) + N_{2} + M \rightarrow N_{2}O + M$$
 1
$$O(^{1}D) + N_{2} \rightarrow O(^{3}P) + N_{2}$$
 2

 N_2O was not found as a product. Thus from our detectability limit for N_2O (0.3 μ), an upper limit to the efficiency of the first reaction relative to the second of 2.5 \times 10⁻⁶ at 1000 torr total pressure was computed. This corresponds to $k_1/k_2 < 0.8 \times 10^{-25} \, \mathrm{cm}^3/\mathrm{particle}$.

TABLE OF CONTENTS

ABSTRACT		•	•	. •	•	•	. •	•	•	•	•	•	•	•	•	•	i
INTRODUCTION.		•	•	•	•		•	•	ě		• ,	•	. •	•	. •	٠.	1
EXPERIMENTAL			•	•		•	•		•			•	•	•		•	3
RESULTS AND DIS	cus	SIO	N	•			•	•			•		•		•	•	4
ACKNOW LEDGEME	ENT	•	•	•	•	•		•	•		•		•	•		•	7
REFERENCES .								. į.	_		_						8

INTRODUCTION

The source of N_2O in the earth's upper atmosphere is still an unsolved problem. Some time ago Bates and Witherspoon 1 considered the reaction

$$O(^{1}D) + N_{2} + M \rightarrow N_{2}O + M$$

but more recently Bates and Hayes² ignored this reaction because it was negligible compared to the deactivation of O(¹D) by N₂.

$$O(^{1}D) + N_{2} \rightarrow O(^{3}P) + N_{2}$$

However very recently ${
m Nicolet}^3$ has again considered reaction 1, and has concluded that if it occurs 10^{-4} as often as reaction 2, it should be the principle source of ${
m N}_2{
m O}$ in the stratosphere.

There is experimental evidence that reaction 1 does occur. Groth and Schierholz 4 photolyzed O_2 at 1470 A and 7 torr pressure in the presence of 419 torr of N_2 and found that about 10^{-4} of the oxygen atoms reacted with N_2 to produce N_2O . However, Katakis and Taube 5 photolyzed O_3 at 2537 A at pressures of 10-100 torr in the presence of 300-500 torr of N_2 , and could not find any oxides of nitrogen; under their conditions, the quantum yield of N_2O formation, $\Phi\{N_2O\}$, was $<10^{-4}$.

DeMore and Raper⁶ examined the photolysis of O_3 in liquid N_2 and found that for incident radiation between 2480 and 3000 A, $\Phi\{N_2O\}$ = 0.014. This value is then the upper limiting value, since it was obtained in the condensed phase at -196°C, conditions which tend to favor reaction 1 over reaction 2; in the gas phase at more elevated temperatures, the yield must be considerably smaller.

We have re-examined this problem in order to resolve the discrepancy between the results of Groth and Schierholz and of Katakis and Taube and to obtain a more accurate value for the efficiency of reaction 1 in the gas phase. At 1000 torr total pressure ($N_2 + O_2$, mostly N_2), we have found no evidence for N_2O formation. Consequently the upper limit for the efficiency of reaction 1 at 1000 torr is $\leq 2.6 \times 10^{-6}$ compared to reaction 2. This upper limit for the efficiency for this reaction has thus been reduced by a factor of 40.

EXPERIMENTAL

Matheson O_2 and Prep. Grade N_2 were purified by passage over traps maintained at -196° C. Both the N_2 and O_2 contained each other as impurities but this is irrelevant. Ozone was prepared by passing an electric discharge through the O_2 . The O_3 produced was collected at -196° C, and the excess O_2 pumped away. The O_3 was then distilled at -186° C, stored at -196° C, and degassed at this temperature before each run.

A conventional high-vacuum line utilizing Teflon stopcocks with Viton "O" rings was used. Both mercury and stopcock grease were vigorously excluded. Pressures of O_3 were measured on a sulfuric acid manometer; N_2 and O_2 pressures, on a NRL alphatron gauge. The reaction cell was a cylindrical quartz cell 10 cm long and 5 cm in diameter. During a run the O_3 was monitored by light absorption. Dark decomposition of the O_3 was negligible.

A Hanovia flat-spiral low-pressure Hg resonance lamp Model No. Z1400-013 was used as a radiation source. A Corning 7-54 filter, which removes wavelengths below 2200 and above 4000 A was used.

After irradiation, the mixture was passed through three traps at -196° C, the first trap being filled with glass wool. The non-condensable gases were removed. The remaining fraction was analyzed for N₂O by gas chromatography on a Porapak Q column, 1/4-inch in diameter by 24 ft. long operated at room temperature. Blank runs which were not irradiated gave $\sim 0.2 - 0.3 \,\mu$ of N₂O.

RESULTS AND DISCUSSION

Experiments were done in which the incident radiation was from a filtered mercury resonance lamp, so that the only effective wavelength was at 2537 A. Ozone at 5-12 torr pressure was photolyzed for 9-24 hours in the presence of 31 to 155 torr O_2 and 870-1050 torr N_2 . The purpose of the added O_2 was to reduce the net rate of O_3 consumption by introducing reaction 3.

$$O(^{3}P) + O_{2} + M \rightarrow O_{3} + M$$
 3

Thus, for example, in the absence of added O_2 , 2 torr of O_3 is completely consumed in 2 minutes; whereas, if 100 torr of O_2 is present it takes 24 hours to completely consume the ozone. Based on a total of 6 experiments, no N_2O above that present as background (0.3 μ) was observed. Consequently, the upper limit for the N_2O yield is $\sim 0.3 \,\mu$. In order to be certain that the small amount of N_2O is not lost during analysis control experiments were done in which several μ of N_2O were added to an identical gas mixture as in an actual run. Complete recovery of the added N_2O was achieved. Finally, $10.5 \,\mu$ of N_2O were added to a mixture of $O_3 - O_2 - N_2$ (13.5:42:880 torr) and photolyzed for 24 hours with no change in N_2O concentration to be certain that N_2O is not consumed by the $O(^1D)$ atoms produced from O_3 photolysis via the reactions

$$O(^{1}D) + N_{2}O \rightarrow N_{2} + O_{2}$$

 $O(^{1}D) + N_{2}O \rightarrow 2NO$

Consequently, N_2O consumption for N_2O pressures $\leq 10\,\mu$ via the above reactions is not important.

The known mechanism of O_3 photolysis at 2537 A and in the presence of O_2 and N_2 is the following:

$$O_3 + h\nu \rightarrow O_2(^1\Delta) + O(^1D)$$
 Rate = I_a
 $O(^1D) + N_2 + M \rightarrow N_2O + M$ 1
 $O(^1D) + N_2 \rightarrow O(^3P) + N_2$ 2
 $O(^1D) + O_3 \rightarrow O_2 + O_2^*$ 3a
 $O(^1D) + O_3 \rightarrow 2O_2$ 3b
 $O(^1D) + O_2 \rightarrow O(^3P) + O_2(^1\Sigma)$ 4
 $O_2(^1\Delta), O_2(^1\Sigma) \text{ or } O_2^* + O_3 \rightarrow 2O_2 + O(^3P)$ 5
 $O(^3P) + O_3 \rightarrow 2O_2$ 6
 $O(^3P) + O_2 + M \rightarrow O_3 + M$ 7

where O_2^* is an unspecified electronic state of O_2 (see reference 7).

With the realization that reaction 1 is unimportant, the mechanism leads to the expression

$$k_{1}[M]/k_{2} = \frac{n\{N_{2}O\}}{n\{O(^{1}D)\}} \left(1 + \frac{k_{3}[O_{3}]}{k_{2}[N_{2}]} + \frac{k_{4}[O_{2}]}{k_{2}[N_{2}]}\right) \quad I$$

where $n\{N_2O\}$ and $n\{O(^1D)\}$ are the quantities of N_2O and $O(^1D)$ atoms produced. $n\{O(^1D)\}$ is obtained by graphical integration from Eqn. II.

$$n\{O(^{1}D)\} = I_{a}' \int_{0}^{\infty} \frac{I_{a}}{I_{o}} dt$$

where I_a/I_o is the fraction of light absorbed, I_a' is the absorbed light intensity for $I_a/I_o = 1.0$, and t is the irradiation time.

A typical graph of I_a/I_o vs. t is shown in Figure 1. The quantity I_a' was found to be $200 \pm 30 \,\mu/\text{min}$ from the photolysis of O_3 alone, where the quantum yield of O_3 disappearance is 5.5 for small conversions. ⁷ Values obtained for $n \{O(^1D)\}$ are shown in Table I.

In order to compute $k_1[M]/k_2$ from Eqn. I, values of $k_3/k_2 = 11.0^{-7.8}$ and $k_4/k_2 = 0.8^{-9-11}$ were used. These values are averages of those given in the references. In computing $k_1[M]/k_2$ from Eqn. I, average values of $[O_3]$ were used, since the term $k_3[O_3]/k_2[N_2]$ is small. The value of $< 2.5 \times 10^{-6}$ for the experiment at the highest O_2 pressure can be taken as the upper limit for the efficiency of reaction 1 compared to reaction 2 at $25^{\circ}C$ and 1000 torr total pressure $(87\% N_2)$. If reaction 1 is entirely in the third order regime, then $k_1/k_2 \leq 0.8 \times 10^{-25} \text{cm}^3/\text{particle}$. The known value for k_2 is $9 \times 10^{-11} \text{cm}^3/\text{particle}$ sec, 10^{-10} and is probably accurate to better than a factor of two. Thus $k_1 < 0.7 \times 10^{-35} \text{cm}^6/\text{particle-sec}$. At stratospheric pressures of 30-50 torr, reaction 1 occurs no more than 2×10^{-7} as often as reaction 2. This is about a factor of 500 smaller than the value estimated by Nicolet $\frac{3}{2}$ to be necessary for reaction 1 to be an important atmospheric source of N_2O .

ACKNOWLEDGEMENT

The authors wish to thank Professor Marcel Nicolet who brought this problem to their attention. This work was supported by the National Aeronautics and Space Administration through Grant No. NGL-009-003 and the Atmospheric Sciences Section of The National Science Foundation through Grant No. GA-12385, for which we are grateful.

REFERENCES

- D. R. Bates and A. E. Witherspoon, Monthly Notices Roy. Astronom. Soc., 112, 101 (1952).
- 2. D. R. Bates and P. B. Hayes, Planet. Space Sci., 15, 189 (1967).
- 3. M. Nicolet, private communication (1971).
- 4. W. E. Groth and H. Schierholz, J. Chem. Phys., 27, 973 (1957).
- 5. D. Katakis and H. Taube, J. Chem. Phys., 36, 416 (1962).
- 6. W. B. DeMore and O. F. Raper, J. Chem. Phys., 37, 2048 (1962).
- 7. For a recent review see E. Lissi and J. Heicklen, <u>J. Photochem.</u>, in press (1972).
- 8. D. R. Snelling and E. J. Bair, J. Chem. Phys., 47, 228 (1967).
- 9. R. A. Young, G. Black, and T. Slanger, <u>J. Chem. Phys.</u>, <u>49</u>, 4758 (1968).
- 10. J. F. Noxon, J. Chem. Phys., 52, 1852 (1970).
- 11. W. B. DeMore, J. Chem. Phys., 52, 4309 (1970).

TABLE I

[O ₃] _o , Torr	[O ₂], Torr		Irradiation Time, hrs. a	n{O(¹ D)}.,	$10^6 k_1 [M]/k_2^b$			
12.0	42	890	23	63	< 5			
6.80	47	900	12.	65	< 5			
9.60	115	870	24	154	< 2.5			

a) O₃ always completely consumed

b) upper limit calculated from Eqn. I and the upper limit for the $N_2\text{O}$ yield of 0.3 $\mu.$

FIGURE CAPTION

Figure 1 Plot of the fraction of light absorbed vs. irradiation time for the photolysis at 2537 A and 25°C of a mixture consisting initially of 9.6 torr O₃, 115 torr O₂, and 870 torr N₂.

Figure 1